
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 6. December 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 11 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 13. December 2021, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus
points.

Exercise 11.1 Shortest paths by hand (2 points).

Dijkstra’s algorithm allows to �nd shortest paths in a directed graph when all edge costs are nonnega-
tive. Here is a pseudo-code for that algorithm:

function Dijkstra(G, s)
d[s]← 0 . upper bounds on distances from s
d[v]←∞ for all v 6= s
S ← ∅ . set of vertices with known distances
while S 6= V do

choose v∗ ∈ V \ S with minimum upper bound d[v∗]
add v∗ to S
update upper bounds for all v ∈ V \ S:
d[v]← minpredecessor u∈S of v d[u] + c(u, v)
(if v has no predecessors in S, this minimum is∞)

We remark that this version of Dijkstra’s algorithm focuses on illustrating how the algorithm explores
the graph and why it correctly computes all distances from s. You can use this version of Dijkstra’s
algorithm to solve this exercise.

In order to achieve the best possible running time, it is important to use an appropriate data structure
for e�ciently maintaining the upper bounds d[v]with v ∈ V \S, as you saw in the lecture on December
2. In the other exercises/sheets and in the exam you should use the running time of the e�cient version
of the algorithm (and not the running time of the pseudocode described above).

Consider the following weighted directed graph:

s

a b

c

d e

5
3

10
1

8
5

9
3

1

2

a) Execute the Dijkstra’s algorithm described above by hand to �nd a shortest path from s to each node
in the graph. A�er each step (i.e. a�er each choice of v∗), write down:

1) the upper bounds d[u], for u ∈ V , between s and each node u computed so far,

2) the setM of all nodes for which the minimal distance has been correctly computed so far,

3) and the predecessor p(u) for each node inM .

Solution:

When we choose s: d[s] = 0, d[a] = d[b] = d[c] = d[d] = d[e] =∞,M = {s}, there is no p(s).

When we choose b: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 10, d[d] = d[e] =∞,M = {s, a, b}, there
is no p(s), p(a) = p(b) = s.

When we choose a: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 8, d[d] = d[e] =∞,M = {s, a, b}, there is
no p(s), p(a) = p(b) = s.

When we choose c: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 6, d[d] = 13, d[e] = ∞,M = {s, a, b, c},
there is no p(s), p(a) = p(b) = s, p(c) = a.

When we choose e: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 6, d[d] = 13, d[e] = 9,M = {s, a, b, c, e},
there is no p(s), p(a) = p(b) = s, p(c) = a, p(e) = c.

Whenwe choose d: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 6, d[d] = 11, d[e] = 9,M = {s, a, b, c,d, e},
there is no p(s), p(a) = p(b) = s, p(c) = a, p(d) = e, p(e) = c.

b) Change the weight of the edge (a, c) from 1 to −1 and execute Dijkstra’s algorithm on the new
graph. Does the algorithm work correctly (are all distances computed correctly) ? In case it breaks,
where does it break?

Solution:�e algorithm works correctly.

When we choose s: d[s] = 0, d[a] = d[b] = d[c] = d[d] = d[e] =∞.

When we choose b: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 10, d[d] = d[e] =∞.

When we choose a: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 8, d[d] = d[e] =∞.

When we choose c: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 4, d[d] = 13, d[e] =∞.

When we choose e: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 4, d[d] = 13, d[e] = 7.

When we choose d: d[s] = 0, d[a] = 5, d[b] = 3, d[c] = 4, d[d] = 9, d[e] = 7.

2

c) Now, additionally change the weight of the edge (e, b) from 1 to −6 (so edges (a, c) and (e, b) now
have negative weights). Show that in this case the algorithm doesn’t work correctly, i.e. there exists
some u ∈ V such that d[u] is not equal to a minimal distance from s to u a�er the execution of the
algorithm.

Solution: �e algorithm doesn’t work correctly, for example, the distance from s to b is 1 (via the
path s-a-c-e-b), but the algorithm computes exactly the same values of d[·] as in part b), so d[b] = 3.

Exercise 11.2 Arbitrage.

When trading currencies, arbitrage means to exploit price di�erences in order to pro�t by exchanging
currencies multiple times. For example, on June 2nd, 2009, 1 US Dollar could be exchanged for 95.729
Yen, 1 Yen for 0.00638 Pound sterling, and 1 Pound sterling for 1.65133 US Dollars. If a trader exchanged
1 US Dollar for Yen, exchanged the obtained amount for Pound sterling and �nally exchanged this
amount back to US Dollars, he would have obtained 95.729 · 0.00638 · 1.65133 ≈ 1.0086 US Dollars,
corresponding to a gain of 0.86%.

a) You are given n currencies {1, . . . , n} and an (n×n) exchange rate matrixR with positive rational
number entries. For two currencies i, j ∈ {1, . . . , n} one unit of currency i can be exchanged for
R(i, j) > 0 units of currency j. �e goal is to decide whether an arbitrage opportunity exists, i.e.,
if there exists a sequence of k di�erent currenciesW1, . . . ,Wk ∈ {1, . . . , n} such that R(W1,W2) ·
R(W2,W3) · · ·R(Wk−1,Wk) ·R(Wk,W1) > 1 holds.

Model the above problem as a graph problem. Show how the input can be transformed into a di-
rected, weighted graph G = (V,E,w) that contains a cycle with negative weight if and only if an
arbitrage activity is possible. Justify why G contains a negative cycle if and only if an arbitrage
opportunity exists.

Hint: Using logarithms might be bene�cial because of the property ln(a · b) = ln(a) + ln(b).

Solution: We create a complete graph G = (V,E) with the vertices V = {1, . . . , n}. An edge
(i, j) ∈ E gets the weight w(i, j) = − logR(i, j). �en suppose an arbitrage opportunity with the
sequence of currenciesW1, . . . ,Wk is possible. �en it must be the case that

R(W1,W2) ·R(W2,W3) · . . . ·R(Wk−1,Wk)R(Wk,W1) > 1

⇔ log (R(W1,W2) ·R(W2,W3) · . . . ·R(Wk−1,Wk)R(Wk,W1)) > 0

⇔ logR(W1,W2) + logR(W2,W3) + . . .+ logR(Wk−1,Wk) + logR(Wk,W1) > 0

⇔− logR(W1,W2)− logR(W2,W3)− . . .− logR(Wk−1,Wk)− logR(Wk,W1) < 0

⇔w(W1,W2) + w(W2,W3) + . . .+ w(Wk−1,Wk) + w(Wk,W1) < 0

consequentlyG contains a cycle of negative weight. Because we only used equivalence transforma-
tions, the argument applies in both directions.

b) �e Bellman-Ford algorithm can be used to �nd out whether a graph contains negative cycles. A�er
` iterations of the Bellman-Ford loop d[v] is equal to d(s, v)≤`, i.e., the minimum weight of a s-v
walk with at most ` edges. A graph contains a negative cycle that can be reached from s if and only
if there exists a vertex v such that d(s, v)≤n−1 6= d(s, v)≤n, where n is the number of vertices.

Use the previous part of this exercise to design an algorithm that decides if an arbitrage opportunity
exists. What is the best running time you can get (in terms of n)?

3

Solution: Since the graph is complete, any negatively-weighted cycle can be reached from any
vertex, we can run Bellman-Ford to detect a cycle starting from any vertex in G. �ere are |V | =
n vertices and |E| = n(n − 1) ∈ Θ(n2) edges. �e algorithm therefore has a running time of
Θ(|V ||E|) = Θ(n3).

Exercise 11.3 Single-source shortest allowable paths (1 point).

Consider a weighted directed graph G = (V,E) that is given in the adjacency-list representation. �e
graph G has n vertices andm edges. �e weights w : E → R of the edges are not necessarily positive,
but the graph does not contain any negative weight cycle. Every vertex is colored either red or green,
so that the vertex set is partitioned as V = Vred ∪ Vgreen. A path is said to be allowable if it contains at
most one red vertex.

We are given a source s ∈ V and would like to �nd the weights of the shortest allowable paths from s to
all vertices in V . �at is, we are interested in

(
δa(s, v)

)
v∈V , where δa(s, v) is the weight of the shortest

allowable path from s to v. If v is not reachable from s by an allowable path, then δa(s, v) =∞.

Describe an algorithm that can e�ciently compute
(
δa(s, v)

)
v∈V . In order to get full points, the runtime

of your algorithm should be O(mn).

Hint: Construct a weighted directed graph G′ with 2n vertices and apply an algorithm that you learned
in class on it.

Solution: We construct the weighted graph G′ = (V ′, E′) with the weight function w′ : E′ → R as
follows

• V ′ = V (0) ∪ V (1), where V (0) and V (1) are two disjoint copies of V . More precisely, for every
v ∈ V , there is exactly one vertex v(0) ∈ V (0) and another vertex v(1) ∈ V (1). Clearly,

n′ = |V ′| = |V (0)|+ |V (1)| = 2|V | = 2n.

• For every edge (u, v) ∈ E in the original graph G, do the following:

– If u ∈ Vgreen and v ∈ Vgreen, add (u(0), v(0)) and (u(1), v(1)) to E′ and set w′(u(0), v(0)) =
w′(u(1), v(1)) = w(u, v).

– If u ∈ Vgreen and v ∈ Vred, add (u(0), v(1)) to E′ and set w′(u(0), v(1)) = w(u, v).

– If u ∈ Vred and v ∈ Vgreen, add (u(1), v(1)) to E′ and set w′(u(0), v(1)) = w(u, v).

– If u ∈ Vred and v ∈ Vred, do not add any edge between {u(0), u(1)} and {v(0), v(1)}.

It is easy to see thatm′ = |E′| ≤ 2|E| = 2m: For every edge in E, we add at most two edges in
E′.

�e construction of G′ takes O(n′ + m′) = O(n + m) time. A�er constructing G′, the algorithm
proceeds as follows:

• If s ∈ Vgreen, we apply the Bellman-Ford algorithm on G′ with s(0) being the source.

• If s ∈ Vred, we apply the Bellman-Ford algorithm on G′ with s(1) being the source.

�is will take O(n′m′) = O(nm) time.

Let (dv′)v′∈V ′ be the weights of the shortest paths that we obtain from applying the above procedure.
For every v ∈ V , the shortest allowable path from s to v can then be computed as

δa(s, v) = min {dv(0) , dv(1)} .

4

�is takes O(n′) = O(n) time.

�erefore, the total runtime of the algorithm is O(nm).

For completeness, let us now explain why this is a correct algorithm (you did not have to do it since
we had not explicitly asked for it in the task). �e correctness of the described algorithm follows from
the following observation:

• If s ∈ Vgreen, then for every v ∈ V , there is an allowable path from s to v in G with exactly
b ∈ {0, 1} red vertices if and only if there is a path from s(0) to v(b) in G′. In fact, there is a
one-to-one correspondence between these paths and their weights are equal.

• If s ∈ Vred, then for every v ∈ V , there is an allowable path from s to v inG if and only if there is
a path from s(1) to v(1) in G′. In fact, there is a one-to-one correspondence between these paths
and their weights are equal.

Exercise 11.4 Traveling in Examistan (This exercise is from the August 2020 exam).

Assume that there are n towns T1, . . . , Tn in the country Examistan. For each pair of distinct towns Ti
and Tj , there is exactly one road from Ti to Tj . All of the roads in Examistan are one-way. �is implies
that there is always a road from Ti to Tj and another road from Tj to Ti. Each road has a nonnegative
integer cost that you need to pay to use this road.

For simplicity you can assume that each town Ti is represented by its index i.

a) Model the n towns, the roads and their costs as a directed weighted graph: give a precise description
of the vertices, edges and the weights of the edges of the graphG = (V,E,w) involved (if possible,
in words and not formal). What are |V | and |E| in terms of n?

Solution: �e towns are modeled as the vertices V = {1, . . . , n} of the graph G. �e roads are
modeled as directed edges E = {(i, j) | i 6= j, i, j = 1, . . . , n}. �e costs that you need to pay to
use the roads are modeled as the weights w of the respective edges.

�e number of vertices is thus |V | = n and the number of edges |E| = n2 − n, since n2 is the
number of possible ordered pairs (i, j) and we have to subtract the n self-edges represented by (i, i)
as they are not part of our graph.

Alternative way to get the number of edges: you choose 2 out of n to get the number of unordered
sets {i, j} with i 6= j, resulting in

(
n
2

)
= 1

2(n − 1)n. But we care for the di�erent directions so we
have to multiply this number by 2 (for (i, j) and (j, i)) resulting in |E| = n2 − n.

In the following subtask b), you can assume that the directed graph in a) is represented by a data
structure that allows you to traverse the direct successors and direct predecessors of a vertex u in time
O(deg+(u)) and O(deg−(u)) respectively, where deg−(u) is the in-degree of vertex u and deg+(u) is
the out-degree of vertex u.

b) Due to the epidemiological situation in Examistan, the authorities decided to reduce the number
of trips between di�erent towns. Now the only way to get from one town to another is to use the
roads. Moreover, if you want to travel from town Ti to the other town Tj , you must visit a test center
during your trip (in Ti or Tj or elsewhere with a detour). Since test centers are expensive, there are
only k < n of them, and they are located only in the �rst k towns T1, . . . , Tk (i.e., one test center in
each of these towns). To compensate for this, the authorities make the roads between all di�erent
Ti and Tj among T1, . . . , Tk free of charge (i.e. their cost is now 0).

5

Provide an as e�cient as possible algorithm that takes as input a graphG from task a) and a number
k, and outputs a table C such that C[i][j] is the minimal total cost of roads that one should use to
get from Ti to Tj with visiting a test center.

What is the running time of your algorithm in concise Θ-notation in terms of n and k ? Justify your
answer.

Solution: Since the paths between the test centers are now free of charge (i.e wi,j = 0), we can
consider the test centers as a super-vertex (i.e. all the test centersmerged to one vertex and connected
to each other vertexwith theminimal cost of all costs from the test centers).�is graph hasn−(k−1)
vertices. �en we run Dijsktra algorithm one time to get the shortest paths from the super-vertex
to each vertex in an array C1[j]. �en we reverse the edges and run Dijkstra another time to get the
shortest paths from each vertex to the super-vertex in an array C2[i]. �e shortest path from vertex
i to vertex j passing through one test center is then C[i][j] = C2[i] + C1[j].

Creating the super-vertex can be done in time Θ(n · k). �e runtime for Dijkstra algorithm imple-
mented with a Fibonacci heap on the modi�ed graph with super-vertex is Θ((n− k) log(n− k) +
(n−k)2−(n−k)), which does not change if we run it two times. Filling the �nal table isΘ((n−k)2),
so the overall runtime is Θ(nk + (n− k)2) = Θ(n2).

6

